Advanced Calculus

Theorem Sheet

Axioms A1 (Basic Properties of \mathbb{R}):

- 1. Closure of addition and multiplication
- 2. Commutativity of addition
- 3. Associativity of addition
- 4. Existence of an additive identity
- 5. Existence of an additive inverse
- 6. Commutativity of multiplication
- 7. Associativity of multiplication
- 8. Existence of a multiplicative identity
- 9. Existence of multiplicative inverses
- 10. The Distributive Property
- 11. The Nontriviality Assumption

Theorems T2 (Basic Properties of \mathbb{R}):

- 1. The additive identity, 0 is unique.
- 2. a0 = 0a = 0
- 3. $ab = 0 \Rightarrow a = 0$ or b = 0
- 4. The equation a + x = 0 has a solution.
- 5. The solution to the above equation is unique.
- 6. The multiplicative identity is unique.
- 7. $a \neq 0 \Rightarrow ax = 1$ has a solution.
- 8. The solution to the above equation is unique.
- 9. -(-a) = a
- 10. $a \neq 0 \Rightarrow (a^{-1})^{-1} = a$
- 11. $a \neq 0 \Rightarrow (-a^{-1}) = -a^{-1}$

Axioms A3 (Positivity Axioms):

- 1. a, b are positive $\Rightarrow ab$ and a + b are positive.
- 2. Exactly one of the following is true
 - *a* is positive
 - -a is positive
 - *a* = 0
- 3. a > b means a b is positive.
- 4. a > 0 means a is positive
- 5. $a \ge b$ means a b is positive or zero.

Theorems T4 (Positivity Properties):

- 1. $a \neq 0 \Rightarrow a^2 > 0$
- 2. 1 > 0
- 3. $a > 0 \Rightarrow a^{-1} > 0$
- 4. c > 0 and $a > b \Rightarrow ac > bc$
- 5. c < 0 and $a > b \Rightarrow ac < bc$

Theorems T5 (Induction Theorems):

- 1. Theorem: \mathbb{N} is inductive
- 2. If $A \subseteq \mathbb{N}$ is inductive, then $A = \mathbb{N}$.
- 3. Let S(n) be a statement (claim) based on the natural number n. Assume the following are true:
 - *S*(1)
 - $S(k) \Rightarrow S(k+1)$

Then S(n) is true for every natural number n.

Theorems T6 (Theorems on numbers):

1. $n, m \in \mathbb{N} \Rightarrow n + m \in \mathbb{N}$

- 2. $n,m \in \mathbb{N} \Rightarrow nm \in \mathbb{N}$
- 3. If $x \in \mathbb{Q}$, then there are some $m, n \in \mathbb{Z}$ with at least one of them odd such that $x = \frac{m}{n}$
- 4. If $n \in \mathbb{Z}$ is even, then n^2 is as well.

Axioms A7 (Sup exists): Every set of real numbers that has an upper bound, has a single smallest upper bound.

Theorem T8 (\sqrt{x} **exists):** Let *c* be a positive number. There is a unique solution to the system below.

$$\begin{array}{l} x > 0 \\ x^2 = c \end{array}$$

Theorems T9 (Archimedean Property):

- 1. $\forall_{c>0} \exists_{n \in \mathbb{N}} (n > c)$
- 2. $\forall_{\varepsilon > 0} \exists_{n \in \mathbb{N}} \left(\frac{1}{n} < \varepsilon\right)$

Theorem T10: Let $n \in \mathbb{Z}$. There is no integer in the interval (n, n + 1)

Theorem T11: Assume $\emptyset \neq S \subseteq \mathbb{Z}$, and that *S* is bounded above. Then *S* has a maximum element.

Theorem T12: $\forall_{c \in \mathbb{R}} \exists !_{k \in \mathbb{Z}} (k \in [c, c+1))$

Theorem T13: \mathbb{Q} is dense in \mathbb{R} .

Theorems T14: For $x \in \mathbb{R}$, d > 0:

- 1. $|x| \le d$ iff $-d \le x \le d$
- $2. \quad -|x| \le x \le |x|$

Theorem T15 (The Triangle Inequality): For all real $a, b: |a + b| \le |a| + |b|$

Theorem T16 (The Reverse Triangle Inequality): For all real a, b: ||a| - |b|| < |a - b|

Theorem T17: Fix $a \in \mathbb{R}$ and r > 0. TFAE:

- |x-a| < r
- a r < x < a + r
- $x \in (a r, a + r)$

Theorem T18: Let $a, b \in \mathbb{R}$, $n \in \mathbb{N}$. Then:

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + \dots + b^{n-1})$$
$$a^{n} - b^{n} = (a - b)\sum_{k=0}^{n-1} a^{(n-1)-k}b^{k}$$

Theorem T19 (Finite geometric series): Let $m \in \mathbb{N}$; $r \neq 1$. Then:

$$1 + r + r^{2} + \dots + r^{m} = \frac{1 - r^{m+1}}{1 - r}$$
$$\sum_{k=0}^{m} r^{k} = \frac{1 - r^{m+1}}{1 - r}$$

Theorem T20 (Binomial Theorem): $a, b \in \mathbb{R}$, $n \in \mathbb{N}$. Then:

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{n}b^n$$
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k}a^{n-k}b^k$$

Lemma L21: If $\{a_n\} \to 0$ and $\exists_{N \in \mathbb{N}} \forall_{n \ge N} (|b_n| \le C |a_n|)$ then also $\{b_n\} \to 0$.

Lemma L22: If $\{a_n\} \to a$ and $\exists_{N \in \mathbb{N}} \forall_{n \ge N} (|b_n - b| \le C |a_n - a|)$ then also $\{b_n\} \to b$.

Theorem T23 (Sum property for convergence): Assume $\{a_n\} \rightarrow a$ and $\{b_n\} \rightarrow b$. Then $\{a_n + b_n\} \rightarrow a + b$.

Lemma L24: Assume $\{a_n\} \rightarrow a$, then $\{ca_n\} \rightarrow ca$.

Lemma L25: Assume $\{a_n\} \rightarrow 0$ and $\{b_n\} \rightarrow 0$, then also $\{a_nb_n\} \rightarrow 0$.

Theorem T26 (product property for convergence): Assume $\{a_n\} \rightarrow a$ and $\{b_n\} \rightarrow b$. Then $\{a_nb_n\} \rightarrow ab$.

Theorem T27: Assume $b_n \neq 0$, $b \neq 0$, and $\{b_n\} \rightarrow b$. Then $\{\frac{1}{b_n}\} \rightarrow \frac{1}{b}$.

Theorem T28 (Quotient property for convergence): Assume $b_n \neq 0$, $b \neq 0$, $\{a_n\} \rightarrow a$, and $\{b_n\} \rightarrow b$. Then $\{\frac{a_n}{b_n}\} \rightarrow \frac{a}{b}$

Theorem T29 (Linearity property of convergence): Assume $\{a_n\} \rightarrow a$, and $\{b_n\} \rightarrow b$. Then $\{ca_n + db_n\} \rightarrow ca + db$

Theorem T30 (Polynomial property for convergence): Assume $\{a_n\} \rightarrow a$, and f(x) is a polynomial. Then the polynomial of the sequence also converges: $\{f(a_n)\} \rightarrow f(a)$

Theorem T31 (Monotone Convergence Theorem): Let $\{a_n\}$ be a monotone sequence. Then $\{a_n\}$ converges if and only if it is bounded. Furthermore, if it does converge, it converges to either its sup or inf.

Theorem T32 (Nested Interval Theorem): Construct a sequence of intervals $I_n \coloneqq [a_n, b_n]$ that are nested, by which we mean $\forall_{n \in \mathbb{N}} (I_{n+1} \subseteq I_n)$. If $\{b_n - a_n\} \to 0$, then for some $c \in \mathbb{R}$:

$$\{a_n\} \to c$$
$$\{b_n\} \to c$$
$$\bigcap_{n=1}^{\infty} I_n = \{c\}$$

Theorem T33: Let $\{a_n\}$ be a sequence and assume $\{a_n\} \rightarrow a$. Then every subsequence also converges to a: $\{a_{n_k}\} \rightarrow a$

Theorem T34: Every sequence has a monotone subsequence.

Theorem T35: Every bounded sequence has a convergent subsequence.

Theorem T36: (Sequential Compactness of closed intervals): [a, b] is sequentially compact for all a < b.

Theorem T37: Let $S \subseteq \mathbb{R}$. The following are equivalent:

- 1. *S* is closed and bounded.
- 2. *S* is sequentially compact
- 3. *S* is compact

Theorem T38: Let $f, g: D \to \mathbb{R}$ both be continuous functions. Then f + g, f - g, and $f \cdot g$ are also continuous.

Theorem T39: Let $f, g: D \to \mathbb{R}$ both be continuous functions. Assume $g(x) \neq 0$ on D. Then $\frac{f}{a}$ is continuous.

Corollary C40: Let $p, q: \mathbb{R} \to \mathbb{R}$ be polynomials. Then p and q are continuous, as well as the rational function $\frac{p}{q}: D \to \mathbb{R}$ where $D = \{x \in \mathbb{R} | q(x) \neq 0\}$.

Theorem T41: Let $f: D \to \mathbb{R}$ and $g: U \to \mathbb{R}$. Assume the following.

- $f(D) \subseteq U$
- f is continuous at $x_0 \in D$
- g is continuous at $f(x_0) \in U$.

Then $g \circ f$ is continuous at x_0 .

Theorem T42 (Extreme Value Theorem): Let $f:[a,b] \to \mathbb{R}$ be continuous. Then f attains both a maximum and minimum value.

Theorem T43 (Intermediate Value Theorem): Let $f: [a, b] \to \mathbb{R}$ be continuous. Let $c \in \mathbb{R}$ such that f(a) < c < f(b). Then there is some $x_0 \in (a, b)$ such that $f(x_0) = c$. The same is true if we replace each "<" with ">".

Theorem T44: Let *I* be an interval and $f: I \to \mathbb{R}$ be continuous. Then f(I) is also an interval.

Theorem T45: Let $f: [a, b] \to \mathbb{R}$ be continuous. Then f is also uniformly continuous.

Theorem T46: Let $f: D \to \mathbb{R}$ where $D \subseteq \mathbb{R}$. The sequential definition of continuity at $x_0 \in D$ is equivalent to the $\varepsilon - \delta$ criterion of continuity at x_0 .

Theorem T47: Let $f, g: D \to \mathbb{R}$ where $D \subseteq \mathbb{R}$ both be differentiable. Then f + g and fg are also differentiable Also, $\frac{f}{g}$ is differentiable on $\{x \in D | g(x) \neq 0\}$.

Theorem T48: Let $f: D \to \mathbb{R}$ where $D \subseteq \mathbb{R}$ be differentiable. Then f is continuous on D.

Theorem T49: Let *P* be a partition of [a, b] and P_2 be a refinement of *P*. Then $L(f, P) \le L(f, P_2)$ and $U(f, P_2) \le U(f, P)$

Theorem T50: Let P_1 and P_2 be partitions of [a, b]. Then $L(f, P_1) \le U(f, P_2)$

Theorem T51: Let a < b and $f: [a, b] \to \mathbb{R}$ be a function. Then $\int_a^b f \leq \overline{\int_a^b f}$.